Neutrinos – O “The Flash” das Partículas Sub-Atómicas

Esta semana fiquei com os neutrinos na mente. Procurei ler e entender mais sobre está partícula sub-atómica e o que ela é capaz de fazer. Então aqui vou dividir alguns minutos da leitura que fiz e compartilhar mais conhecimento. Vlw.

Neutrino é uma partícula sub-atómica dificilmente detectada porque sua interação com a matéria é muito fraca, sua carga é neutra e sua massa extremamente pequena. A sua formação se dá em diversos processos de desintegração em que sofre transição para um estado de energia mais baixa, como quando o hidrogênio é convertido em hélio no interior doSol. Neste momento são gerados todos os comprimentos de ondas.

A maioria dos neutrinos que atravessam a Terra são provenientes do Sol, e mais de 50 trilhões deles passam através do seu corpo a cada segundo.

História

Wolfgang Pauli em torno da década de trinta, observou que em vez de ter uma energia de 0,8 MeV, o elétron quando acelerado (emitido), possui uma energia variável entre 0 e 0,8 MeV.

Considerada uma anomalia, o cientista procurou uma forma de adequar matematicamente a prática e a teoria, pois ambas não eram concordantes.

Em torno de 1931, Pauli encontrou vestígios do que poderia vir a ser outra partícula muito pequena que acompanhava o elétron em sua aceleração. Esta foi denominada de “neutrino”.

Somente em 1956, é que se comprovou a existência real do neutrino, pois sua interação era tão pequena que quase não foi possível sua detecção. Fisicamente, o primeiro detector de neutrinos consistia de uma cubo com 400.000 litros de tetracloroetileno.

No início da década de sessenta, foi descoberto em laboratório que os prótons e nêutrons compunham-se de partículas que foram chamadas de quarks.

Em meados da década de oitenta, os quarks, juntamente com outra classe de partículas subatômicas conhecidas como léptons, constituíam os blocos construtores fundamentais de toda matéria.

O NEUTRINO

O neutrino é uma das partículas elementares da matéria/energia (neste caso há que se ter cuidado em dissociar a matéria da energia). Tem o mesmo momento angular intrínseco, spin ou giro da mesma forma que os prótons, elétrons e nêutrons, e diferente dos fótons que têm o dobro do giro ou spin.

Pertence à família dos léptons, sua massa é muito pequena (antigamente se pensava que podia ser nula). O spin do neutrino é 1/2, sua carga elétrica pode ser considerada nula. Esta partícula é formada em diversos processos de desintegração beta, e na desintegração dos mésons K. Pode-se dizer (por enquanto) que existem três tipos de neutrino. Estão intimamente associados ao elétron, ao tau e ao múon.

Velocidade

Antes que a ideia de oscilações de neutrinos surgisse, era comumente aceito que eles viajavam à velocidade da luz. A questão da velocidade do neutrino está intimamente relacionada à sua massa extremamente pequena. De acordo com a teoria da relatividade, se os neutrinos têm massa, eles não podem alcançar a velocidade da luz.

Em setembro de 2011, surgiu a especulação por parte do laboratório Cern, de que os neutrinos podem mover-se a uma velocidade superior à da luz. Esse resultado não havia sido detectado em experimentos anteriores. Nenhum cientista confirmou a medição e ainda são feitos experimentos para dizer se a medição é verdadeira.

Tipos de neutrinos

  • Neutrino do elétron = Neutrino eletrônico é associado ao elétron, de número eletrônico +1; neutrino do elétron, seu símbolo é: νe
  • Neutrino do múon = Neutrino muônico associado ao múon-menos, e de número muônico +1, seu símbolo é νμ
  • Neutrino do tau = Neutrino tauônico, associado ao tau, e de número tauônico +1, seu símbolo é ντ.

Interações

Os neutrinos sofrem, apenas, interações fracas e gravíticas. Experiências executadas em laboratórios de partículas indicam que se transformam de um tipo em outro durante seu deslocamento. A isto se chama oscilações de neutrinos. Pontecorvo e outros especularam que os neutrinos poderiam ter tais oscilações, pois a quantidade de neutrinos medida que chegavam à terra vindos do Sol eram menores que o predito pela teoria, mas estas oscilações não eram preditas no Modelo Padrão que descreve as interações das partículas elementares. Este foi a primeira evidência de um fenômeno não descrito pela teoria, e por isto Koshiba e Davisganharam um Prêmio Nobel em 2002.

A primeira observação direta deste fenómeno foi feita pelo experimento “Opera” (Oscillation Project with Emulsion-tRacking Apparatus) usando os dados do CERN através de feixes de neutrinos do tipo múon enviados do CERN ao Laboratori Nazionali del Gran Sasso nos quais foram encontrados neutrinos tau (antes disso, apenas o desaparecimento dos neutrinos múon foi observado em laboratório).

Matéria transparente

Para a passagem dos neutrinos, a matéria é transparente, isto quer dizer que atravessam a Terra (e presume-se o Sol) praticamente sem perder energia. Além disto, presume-se também que apenas uma pequena fração das partículas é detida pela matéria ordinária.

Para se ter uma idéia da transparência da matéria, suponha-se que houvesse um detector de neutrinos e fótons cuja passagem fosse medida quando provindos do Sol e o aparelho hipotético os deixasse passar, ou seja, apenas contasse a quantidade de ambos. Os fótons após contados seriam detidos pela Terra, os neutrinos não. Quer dizer, ao virar o instrumento para a o chão durante a noite, e posicionando-o enxergando o Sol através da Terra, seriam contados quase em sua totalidade os neutrinos solares, muito poucos seriam detidos, o planeta é transparente.

Astrofísica e Astronomia

Em astrofísica, sabe-se que a detecção de neutrinos é importante para se levantar os meios de observação direta das reações termonucleares no interior do Sol. Estes corpúsculos são testemunhas diretas da evolução de nossa estrela. A densidade de energia em forma de neutrinos na radiação cósmica poderá fornecer muitas respostas acerca de nosso universo. A principal é sobre a idade do universo e a quantidade de matéria/energia negra presente no espaço, com estes dados, pode-se determinar futuramente se o modelo universal é aberto, fechado ou plano. A forma como ocorreu o Big-Bang, a forma do tecido universal e suas distorções, entre outras descobertas que ainda virão.

Física de partículas
Elementar
Férmions
Quarks u · d · c · s · t · b
Léptons e · e+ · μ · μ+ · τ · τ+ · νe · νe · νμ · νμ · ντ · ντ
Bósons
Gauge γ · g · W± · Z
Outras Fantasma de Faddeev–Popov
Hipotéticas
S-partículas
Gauginos Gluino · Gravitino
Outras Axino · Chargino · Higgsino · Neutralino  · Sfermion
Outras A0 · Dilaton · G · H0 · J · Táquion · X · Y · W’ · Z’ · Neutrino estéril
Composta
Hádrons
Bárions / Híperons N (p · n) · Δ · Λ · Σ · Ξ · Ω
Mésons / Quarkónio π · ρ · η · η′ · φ · ω · J/ψ · ϒ · θ · K · B · D · T
Outros Núcleo atómico · Átomos · Diquarks · Átomos exóticos (Positrónio · Muónip · Ónio) · Superátomos · Moléculas
Hipotéticas
Hádrons exóticos
Bárions exóticos Dibárion · Pentaquark
Mésons exóticos Glueball · Tetraquark
Outras Molécula mesônica · Pomério
Quase-partículas Sóliton de Davydov · Excíton · Magnon · Fônon · Plasmaron · Plasmon · Polariton · Polaron · Roton · Trion

OS NEUTRINOS NO CINEMA

 

Coitado do nosso Cristo. Quem diria que os Neutrinos poderiam causar o quase fim de um planeta.

Anúncios
por hansclamp Postado em Agonia

Deixe um comentário

Preencha os seus dados abaixo ou clique em um ícone para log in:

Logotipo do WordPress.com

Você está comentando utilizando sua conta WordPress.com. Sair / Alterar )

Imagem do Twitter

Você está comentando utilizando sua conta Twitter. Sair / Alterar )

Foto do Facebook

Você está comentando utilizando sua conta Facebook. Sair / Alterar )

Foto do Google+

Você está comentando utilizando sua conta Google+. Sair / Alterar )

Conectando a %s